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Ergodie Properties of the Multidimensional 
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We consider a multidimensional system consisting of a particle of mass M and 
radius r (molecule), surrounded by an infinite ideal gas of point particles of 
mass m (atoms). The molecule is confined to the unit ball and interacts with its 
boundary (barrier) via elastic collision, while the atoms are not affected by the 
boundary. We obtain convergence to equilibrium for the molecule from almost 
every initial distribution on its position and velocity. Furthermore, we prove 
that the infinite composite system of the molecule and the atoms is Bernoulli. 

KEY W O R D S :  Rayleigh gas; Bernoulli flow; Harris chain. 

1. ~NTRODUCTION 

Several efforts have been made to understand the dynamical theory of 
Brownian motion at least for simplified models. A unified theory for the 
Rayleigh gas, i.e., for the case when the Brownian heavy particle interacts 
with an ideal gas, is outlined in ref. 5. (A good survey of results and conjec- 
tures can be found in ref. 6.) These efforts were made toward limit theorems 
for the motion of the heavy particle. A related direction of research is 
aimed at the ergodic properties of the same system. The simplest one- 
dimensional case is discussed in ref. 3, when the heavy particle is confined 
to the unit interval. The semi-infinite case is investigated in ref. 1, whose 
method can be generalized to a wide class of systems where the heavy par- 
ticle is subject to an external potential (ref. 4). All these models were one- 
dimensional; however, in ref. 6 a short section is devoted to the multi- 
dimensional case. In a recent paper we generalize the method and results 
of ref. 3 to a multidimensional system. We hope that our result may 
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stimulate similar progress toward ergodic properties and limit theorems for 
multidimensional systems (maybe with an external potential), as was the 
case for the one-dimensional ones. 

2. D E S C R I P T I O N  OF THE M O D E L  A N D  R E S U L T S  

Consider the following dynamical system describing an infinite number 
of particles moving in d-dimensional real space. A particle of mass M and 
radius r moves in the unit ball B(0, 1) c R a centered at the origin. It is in 
contact with an ideal gas of point particles of mass m ( M >  m) which inter- 
act with the molecule through elastic collision. The molecule also interacts 
with the wall of the ball through elastic reflection. The wall does not affect 
the atoms. Between collisions, the particles move freely. 

Suppose that this infinite system is in equilibrium at temperature 
T =  (kfl)-1 and density p, i.e., the particles are distributed according to the 
appropriate infinite-volume Gibbs state #. Let ~r = (s #, ~b,) denote our 
system, where t2 is the phase space and ~b, is the time evolution. Following 
the idea of ref. 3, we show that ~r is a Bernoulli flow. 

Denoting by X(t) the position and V(t) the velocity of the molecule 
at time t, we have a stochastic process Y(t)= (X(t), V(t))eB(O, 1)x R d on 
(O, #). Let ~ denote this process. This process inherits an equilibrium 
distribution v(dX, dV) cc e -(m)~Mv2 d X d V  for the molecule. We prove 

= t of Y(t) given that for a.e. Yo (-go, Vo) the conditional distribution vy0 
Y(0) = Yo converges to v in variation norm. 

Let J / / =  (Z(t)),~ a denote the process obtained by observing only the 
particles in B(0, 1 ), that is, Z( t ) e  s Imo, 1), where s le(o ,1) denotes the phase 
space of J//. 

Clearly Jg is Markovian with stationary distribution a(dz)= 
t~(Z(O)edz). Let Pt(z, d z ' )=#(Z( t )edz 'LZ(O)=z)  be the transition 
probability for the process ~/. For each ~>0,  let J/g~= (s a, U )  
denote the stationary Markov chain obtained by observing Z only at times 
nz (n sN) .  

T h e o r e m  1. For any r > 0, Jr is an ergodic aperiodic Harris chain. 
(For relevant definitions see ref. 3.) 

The key lemma is the following. 

Main k e m m a .  There exists a set O~f2lB(o,1 ~, o(s 1, such that 
for any z, z' ~ ~,  U(z, �9 ) and U(z', �9 ) are overlapping for t sufficiently large. 

Since a( . )  = ~ P'(z, .) a(dz), it follows from the Main Lemma that a(. ) 
and U(z , . )  are overlapping for all z E ~ and for t sufficiently large. From 
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this we get the proof of Theorem 1 following the proof of Theorem 1 in 
ref. 3. Moreover, we have the analogue of Corollary 1 of ref. 3. 

C o r o l l a r y  1. (i) riP'(z, ")-~r( ' )H--*0 in variation norm as t--, oe 
for a a.e. z ~ l B ( o , 1  ). 

(ii) There exists a set ~c(21~(o, l  ), a ( ~ ) =  1 such that rlvP'-all ~ 0  
as t ~ oc for any probability measure 7 on t-2 Is(0, t) with V(t~)= 1. 

Restricting this collorary to ~ ,  we have a similar convergence to equi- 
librium theorem for N. (See Theorem 2 in ref. 3.) Using Appendix B of 
ref. 3, we obtain the following result. 

C o r o l l a r y  2. The process Jr hence, sr and ~ are Bernoulli. 

The Bernoulliness of d in the one-dimensional model follows from the 
fact that the process N is equivalent to ~r in an abstract sense, since from 
the knowledge of ~ one can recover the process d (see ref. 3). Here this 
conclusion does not follow, since certain atoms may never get inside the 
ball. But they develop independently from one another and from JA(. Thus, 
N can be factorized into two subsystems: one contains all atoms which 
ever get inside the ball; the other contains the rest. The first is Bernoulli for 
the same reason as in ref. 3. The second is an ideal gas in Ra\B(0, 1); 
thus, it is Bernoulli itself (see ref. 2, p. 199). Since the two factors are 
independent, we get the Bernoulliness of ~r 

3. P R O O F  OF THE M A I N  L E M M A  

The proof consists of three parts. In the first part we prove that for 
almost all z e Jr one can "sweep out" all atoms from the ball by choosing 
an appropriate "environment"; that is, there exists a suitable phase point in 
f2lB(o,1)c such that after awhile there is no atom in the ball (Lemma 1). 
Lemma 2 shows that a small perturbation of the environment yields essen- 
tially the same "sweeping out"; thus, it occurs with positive probability. 
Lemma 3 asserts the overlapping of the measures Pt(z, .) and U(z', .) if z 
and z' consist of the molecule only. From these lemmas the Main Lemma 
follows. 

L o m m a  1. For  almost all phase points 

Z=Z(O)= ((~'r(O), V(O)), (~i(0), ~i(0)), i =  1, 2,..., ]~) ~ ./~ 

there exists a time t and a phase point with finitely many atoms 

2 =  2 ( 0 ) =  (((,(0), 0,(0)), I(,(0)I > 1, i =  1, 2,...) 

such that ~ '(ZuZ)IB(o,1)consists  of the molecule only. 

822/59/5-6-32 
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Proof. We have to sweep out all atoms of Z (which we will call 
Z-atoms) from the ball. The idea is that suitably chosen outside atoms 
(Z-atoms) colliding with the molecule can arbitrarily change its velocity. 
We will use a very fast Z-atom to make the molecule push out the nearest 
Z-atom. To guarantee that these atoms leave the ball freely (i.e., they do 
not meet the molecule again), we stop the molecule by an other Z-atom. 
The later possible collisions with other Z-atoms cannot speed up the 
molecule too much. During the whole procedure we shall take care to 
avoid multiple collisions. Since almost all phase points Z have finitely 
many atoms, the repetition of this procedure works. 

Let Z contain n atoms. We prove by induction on n. Let E denote the 
full energy of this phase point, E =  �89 ~ mitl2i). Let us allow the 
system to develop freely for time 1 and consider the phase point Z(1). If 
during this time the number of Z-atoms decreased, then we are done. So 
we can assume that Z(1) has n atoms. Let e be the minimal distance 
between the Z-atoms and the boundary of the ball at time 1. With 
probability one, e > 0. Let H 5 be the following set (see Fig. 1): 

= ra in  s':3y, lyl~<l-~-r,  ly-xl-=r, ly-X(1)l=s' 

In other words, these points form the "front" of the molecular radius of 
action, that is, the molecule has to fly a distance of at least s to hit the 
points of H,  if the molecule is not allowed outside B(0, 1 - e/2) (e is intro- 
duced to avoid the simultaneous collisions with the wall and the atom). Of 

Fig. 1. The "front' of the molecular radius of action. 
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course, B(0, 1 - e / 2 )  = (Jo~<s~2 Hs- Let s0--rain{s: ~i<~n, ~i(1)~ H,}, that 
is, the ith atom can be hit with the shortest molecular flying distance (this 
atom is called the target, since it will be pushed out first). With probability 
one, So > 0, and the index / i s  unique, i.e., there is no Z-atom in (j~so+~H, 
except for the ith one if 6 > 0 is small enough. Let even 6 < So. Thus, there 
exists a to> 1 such that (1) there is no Z-atom in the time interval [ l ,  to] 
in (J,~,0+~/2 H~ except for the target; (2) the target remains at a distance 
at least 3e/4 away from the wall. 

The first Z-atom will hit the molecule at time 1 and will direct it to 
the target. Let t denote the time of collision between the target and the 
molecule (t will be chosen smaller than to). Let s(t) be defined by 
~i(t) ~ H~(t), and if t is small enough, then fs(t)- soD < ~/2 and s(t) > 6/2. 
By the definition of H~(t) there is a y(t) such that ly(t)-J((l)] =s(t) ,  
I~( t ) -y ( t ) l=r  and ly(t)i<<,l-e/2-r. Let V*(l+O)=[1/(t-1)] 
[ y ( t ) - X ( 1 ) ] ,  the postcollision velocity of the molecule after the collision 
with the first Z-atom at time 1. By the Proposition of the Appendix, there 
exists a suitable Z-atom (~(0),  01(0)) for this task, and if t is small 
enough, i.e., V~(1 + 0 )  is large [since jy(t)-X(1)i =s( t )  is separated from 
zero], then 0~(1 - 0 )  must be greater than 2, i.e., ( i(0) is outside of the ball 
[see Proposition (i)]. If t is even smaller, then the postcollision velocity of 
this atom can be guaranteed to be greater than K [see Proposition (ii)], 
where 

4m 2 2 E l  1/2 "xl 
K =  max ([(M--2m- m)  + --m7 J 2E l  1/"'I 4Em2m) 2 

Now we consider the second'collision. We have 

rl l l( t+o)_m-Mrll l( t_O)+ 2M V,,f(t_O ) 
m+M 

where t - O  and t+ O  indicate the pre- and postcollision velocities, the 
parallel sign denotes the component parallel to the normal vector of 
incidence. Of course, Vt(t-O)= Vt(1 +0) ,  since the choice of i and to 
guarantees that no collision occurred in [1, t]. 

If t is close enough to 1, then )/ll(t+O)l ~>K can be achieved, since 
ql.i(t-O) does not depend on t and the angle a(t) between V'(1 + O) and 
xi(t ) - X(t) is separated from ~/2 by (2). Thus [ V~ll(1 + 0)1 >~ ~' IV'(1 + 0)t 
for a fixed e' > 0 and iV*(1 + 0)l can be arbitrarily large if t is close enough 
to 1, since s(t) is separated from zero. Because of the choice of i and to, the 
molecule does not hit any other Z-atom in the interval [1, t]. 

Now we need to guarantee that the molecule no longer hits either the 
first Z-atom or the target (i.e., they fly away from the ball freely). These 
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two atoms have velocity larger than K, but actually the molecule can be 
faster. We need to slow it down by a second Z-atom. 

If the molecule is slower than (K 2 -2ELM) 1/2 after the collision with 
the target, then the second Z-atom is not necessary. In this case the 
molecule cannot accelerate to velocity K, since the total energy of the 
system consisting of the molecule and the other n - 1  atoms is less than 
�89 2. There are two fast atoms in the ball, but the molecule cannot reach 
them (and cannot get energy from them) since their velocities are greater 
than K and they are flying away from the point X(t). 

If V'(1 + 0 )  is at least (K 2 -  2ELM) 1/2, then we need a second Z-atom 
to stop the molecule. After the collision with the target, let t~ be the 
first time the molecule hits any atom or the wall. With probability one, 
t~>t. We direct the second Z-atom to stop the molecule at time 
t2 = t + ( t l -  t)/2. By the Proposition it can be done by a suitable Z-atom 
((~(0), 0~(0)). The collision yields 

0~(0) = ~( t2  - 0) = [(m - M)/Zm] V'(t + O) 

thus, for the speed of the stopping atom we have that 

M-- m ( K2 2E~1/2 >~ 2 

because of the choice of K. Since t > 1, this guarantees that at time 0 this 
atom was outside the ball. 

On the other hand, we have to guarantee that the molecule would not 
affect the motion of the two Z-atoms and that of the target. 

The second Z-atom cannot be affected, since its velocity 

m - M _, 0 2M 0) [/7/~(/2 -~- 0)l = ~ ~2( ) -~ ~ Vt(  t "}- 

( 2 2E)  '/2 M + m  M + m  K - - ~  
- 2-----~ IVt(t+0)l ~ > - 2 ~ m  

is greater than (2ELM) ~/2, which is the maximal velocity the molecule can 
gain from the rest of the Z-atoms. 

To prove that the target cannot be affected, let us suppose that the 
hyperplane perpendicular to the normal vector of its collision with the 
molecule is moving together with the target. Between t and t 2 the molecule 
does not intersect this moving hyperplane. 

After ta this hyperplane is moving away with speed at least K, which 
is greater than (2E/M) 1/2, the maximal molecular velocity; thus, the 
molecule never reaches the target. 
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At the end we have to prove that the first ;Z-atom is not affected. But 

_ _  2m 
Vtll( t + O) = v ' i l (  t2 - O) - M - m V,Jl( t _ O) + ._-7----  tllF( t -- O) 

M + m  M + m  

which points in the same direction as V ' l l ( t - O )  if v~iJ( t -0)  is large 
enough, i.e., if t is close enough to 1 [here we used the fact that c~(t) is 
separated from zt/2]. This proves that between t and t 2 the molecule was 
moving away from the first Z-atom. After t2 the atom is moving faster than 
the molecule; therefore, they do not meet. 

All we have to do is to wait until the target and the two Z-atoms fly 
away from the ball. Then the new configuration has at most n - 1  atoms 
and the induction works. After a finite time all atoms can be swept out 
from the ball. 

k e m m a  2. Given To, then for almost all phase points 

Z = Z(0) = ((X(0), V(0)), (~i(0), rh(0)), i =  1, 2 ..... n) 

there exists a moment T such that 

fi(~r(Zt..) Z)[B(O, 1) has no atoms [Z) > 0 

for all ~ ~ [T, max(To, T) + 3]. 

P r o o f .  It follows from Lemma 1 that there exists a moment T 
and a phase point Z =  {(~(0),0~(0), J(,(0)l > 1, i =  1,2,...} such that 
~b~(Z~ 2)lB(o,1)contains no atoms for all v > T. (Originally it was proved 
for only one T, but clearly if Z consists of only those atoms which played 
a role in directing the molecule, then these atoms will never return to the 
ball; therefore, nothing will affect the molecule any more.) 

We have to perturb this phase point 2 such that it has positive prob- 
ability. All we have to keep in mind is the following regularity property of 
the collisions. 

Regularity Property (RP). With probability one, the following 
holds: Given a phase point at time to such that on the surface of the 
molecule there is no atom, suppose that there is an atom A = (r r/(t0)) 
inside or outside the ball such that it is to be collided with (not touched 
by) the molecule at time t o + t and no other collisions or touches occur 
with any atom or with the wall in the time interval [to, to+  t].  This 
collision will be called regular, and it is continuous in the following 
sense. Given an arbitrary e > 0 ,  there exists 6 > 0  such that if 
l to- t~[  <3,  [~(t0)-~ ' ( t~)  I <fi, [q( to ) -~ l ' ( t ' o ) l  < 3 ,  t Z ( t o ) - X ' ( t ' o ) [  <3,  
[ V ( t o ) - -  V'(t~)[ < 6, then the perturbed molecule given by (X'(t~), V'(t 'o))  
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would hit the perturbed atom (~'(t;), t/'(t;)) at time t' such that I t ' - t h  < e, 

V' IX'(t')-Z(t)l<e, I~ ' ( t ' ) -~( t )L<e ,  [ + - V + k < e ,  l t l + - t / + l < 5 ,  where 
V+, V+, t/+, t/+ are the postcollision velocities of the original and the per- 
turbed molecule and atom, respectively. Moreover, by choosing 6 small 
enough, we can assure that in the time interval [ t ; ,  t;  + t ' ]  no other colli- 
sions occur. A similar RP can be stated for the collision with the wall. 
Furthermore, it follows from the differentiability of the collision equations 
that in case of regular collision the postcollision phase point depends on 
the precollision one in a differentiable way; i.e., we have: 

(i) The positions X(t) and ~(t) are differentiable functions of t, 
X(to), V(to), ~(to), and t/(to). 

(ii) If the collision is regular, then the postcollision velocities are 
differentiable functions of the precollision ones and the collision point on 
the surface of the molecule. 

Now we can prove Lemma 2. Attentively reading the proof of 
Lemma 1, one can observe that all collisions are regular. (That is why we 
had to define H, in a bit smaller ball, and this is the reason for waiting for 
a while after hitting the target and before sending the stopping atom. We 
intentionally avoided multiple collisions and touches which cannot be 
perturbed.) 

Because of the RP and the finiteness of Z, we get that a small 
perturbation of Z yields the same order of collisions and almost the same 
hitting points and velocities. Considering the distribution of the ideal 
gas, we obtain that a small perturbation of Z has a positive probability 
provided that only these atoms are in the ball with radius 
R o = m a x { l ~ i ( 0 ) l ; ~ i ~ Z } + l .  But the probability that no other atoms 
enter the ball B(0, Ro) in the time interval [0, max(T, To) + 3] is clearly 
positive, and this proves Lemma 2. 

ke rnma  3. Given two phase points ZI(T)=(XI(T), V1(T)), 
Z2(T)=(X2(T), V2(T)) of s at the same time T such that they 
contain no atom and we suppose that qXi(T)h <1,  X,(T)~O, Vi(T)vLO 
( i=  1, 2), then the conditional measures P~, ( . )=  U( .  [Z~(T)) ( i=  1, 2) are 
overlapping if t >~ 3. 

ProoL Let 8 be the following event: 

(there is no atom in the ball at time Tand T +  3; 
) i n  the time interval [T, T+ 3] exactly two collisions 

= }occur and the molecule does not hit the wall; 
I,[X(T+3)I<6, IV(T+3)[<6 

(6 > 0 will be chosen later). 



Multidimensional Rayleigh Gas 1597 

We have 

P3(~;(~+ 3)~ dx, v(r+3)~dvlzi(r)) 

= •(X(T+ 3) ~ dx, V(T+ 3) ~ dvl~, Z,(T)) • ~ ( ~  I Z i (T) )  

First, we have to prove that on the event g the measure 

P~(dx, dv)=~,(Z(T+ 3)~dx,  V(T+ 3)~d~l~ ,  Z,(T))  

and the Lebesgue measure 

A(2a)(dx, dr) = A(a)(X( T + 3) 6 dx) . A(~)( V( T + 3) e dr) 

are equivalent. (Here A (a) denotes the d-dimensional Lebesgue measure.) 
Second, we are to prove that/~(g] Z i ( T ) ) >  0 ( i=  1, 2). 

We introduce the following notations. Let Xo=Xi(T) ,  Vo= V~(T), 
X 3 = X~(T+ 3), V2 = V,(T+ 3). Let t a + T and t2 + T be the times and X1 
and )(2 the molecular positions of the collisions. Let VI and V2 be the 
postcollision velocities and ex, e2 the unit normal vectors of the collisions. 
Let vl, v [  and v2, v ]  denote the pre- and postcollision velocities of the 
atoms, and xl ,  x 2 denote their positions at time T. Let S = S, c R 4a be the 
following set: 

S~= {(xl,  x2, vl, v2): such that g is true under the condition 
that Z, (T) is given } 

We know that the second correlation function of the Gibbs measure/~ 
at (Xl, x2, Vl, v2) exists and it is positive, and its integral on Si is equal to 
P(g[Z~(T))  due to the Poisson property of the Gibbs state. Summing up, 
we have to prove that the function F(x~, x2, v~, v2) = (X~, V2) has full rank 
in S or in a subdomain of S with positive Lebesgue measure, since this 
proves that the distribution P~ of (X 3, V2) in a subset of [ - 6 ,  6] 2a is 
equivalent to the Lebesgue measure. 

First we prove that S~ is nonempty; moreover, there exists a 

P = (s X2' ~I' ~2) 

such that F(/~) = (0, 0). Then we are to prove that a small full-rank pertur- 
bation p of/~ yields a full-rank perturbation of the range F around (0, 0). 
The RP guarantees that F is continuous; moreover, it is differentiable in a 
small neighborhood of / i  Therefore, we need only to prove that its 
Jacobian has full rank at point ~. 

In order to prove that S~ is nonempty, we have to push the molecule 
to the origin and stop it there. It can be done by two suitably chosen 
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Fig. 2. Two consecutive collisions. 

Z-atoms (Fig. 2). Let t~ > 0 be small enough so that the molecule neither 
hits the wall nor gets to the origin in [T, T +  tl] .  Let V+ = - c  .Xi(T+ t,), 
V = Vi(T+ t~), X= Xi(T+ tt) and use the Proposition to obtain suitable 
hitting point x and velocity v . Let rl~(T)=rll(T+tl)=v and 
~I(T) = x -  v_ �9 tl be the phase point of the first atom. If c is large enough, 
then by (i) of the Proposition, v is larger than 2/tl, that is, ~I(T) is out- 
side the ball. If c is even larger, then (ii) and (iii) guarantee that Iv+l> 2, 
and v_ and v+ are opposite, so in a unit of time after the collision this 
atom leaves the ball following the same path by which it entered. Its 
motion will no longer affect that of the molecule. 

The second atom is used for stopping the molecule; therefore, it should 
hit the molecule exactly when it gets to the origin. The velocity v of 
this atom is equal to - [ ( M - m ) / 2 m ]  V+. If c is large enough, then 
Iv I >~2/tl, that is, r /2 (T)=v_,  and 

Xi(T+ tl) ( IX~(T+ tl),) 
~2(T)  = IXs(T+tl)[ " r - v -  tl+ IV+[ 

determines a point outside the ball. 
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Thus, the second atom stops the molecule and in a unit of time leaves 
the ball if c is large enough [Proposition (iv)]. Waiting until both atoms 
leave the ball, we get a phase point of ~.~ which consists of only the 
molecule standing in the origin and we need less than 3 units of time for 
this purpose. Thus S i is nonempty, since fi = ({l(T), ~2(T), r/l(T), t/~(T)) 

&, F(/5)= (0, 0). We note that all collisions satisfy the RP, that is, a 
small perturbation of/5 yields the same order of collisions. 

Now we turn to the Jacobian of F at point/5. 
We have the following equations (see Fig. 2): 

2 m  
V~ = Vo-~ ( v l -  Vo, e l ) ' e l  (1) 

m + M  

2m 
I/2 = V l '~- - - .  (to 2 -- V1, e2) .e 2 (2) 

m + M  

& = xo + t, Vo (3) 

, ~  = Xo + t, Vo+(t~-tl) v, (4) 

"~3 = Xo "~- tl  Vo -]- (/'2 - t l )  Vl + (3 - 12) V 2 (5)  

xl + vl tl = Xo + tl Vo + rei (6) 

X2 q-- V2t2 ~--- X0 q- t I V 0 -}- ( t  2 - -  t l )  V l q- re 2 (7) 

Here (a, b) denotes the scalar product of the vectors a and b. 
F is the composition of the following two functions, which are differen- 

tiable in a small neighborhood of/5 and F~(/5), respectively: 

Fl (x l ,Xz ,  Vl, V2)=(Vl,V2, tl, t2, el, e2), FI :R4d--~RZdxR2•  2(d-l) 

F2(101, v2, tl, t2, e l , e 2 ) = ( X 3 ,  V2), Fz :R2dxR2xR2(d- I ) - -+R 2a 

The differentiability follows from the RP. 
The Jacobian o f F  1 has full  rank at ft. Now, F1 is invertible, since from 

(1), (6), (7), we have 

Xl =J(o + tl Vo + rel -- vl tl 

x 2 = X o + t l V o + ( t 2 - - t l )  V o + - ~ - ~ ( v l - V o ,  e l ) ' e l  +re2-v212 

Since F~  l is clearly differentiable, the Jacobian of F 1 at/5 is invertible, 
so it has full rank. 

The Jacobian ofF2 has full  rank at F1(/5) = (~5 l, f2, {i, t2, ~1, e2)' Again 
elementary calculation shows that subtracting 3--t2 times the second d 
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rows from the first d rows of this Jacobian, we have the following simple 
matrix: 

M=((t2-q)dV1/dvl O Vo-V1V1-V2  (t2-tl)dV1/de] O ) 
dV2/dv 1 dVz/dv 2 0 0 dVz/del dV2/de2 Fl(fi) 

We prove that both matrices 

(d<d<) 
M1 = \ dr1 de1/v~(~ 

and 
(dV2dV2) 

M2=\~v2 de2/rl(r 

have rank d and this proves that rank M =  2d ( t 2 - t 1 5 0 ,  because the time 
of the first collision can be chosen in such a way that, at tl, the molecule 
is not at the origin, remembering that X0 = 0, 17o = 0 was excluded in 
Lemma 3). 

Calculation shows that M~ is 

I !  0 ' '" 0 (~1 -- Vo, el) 
0 0 0 

- - 2 m  . . . 

m + M  
0 . . . 0  0 

0 1 * 

0 -.. 0 t (~1 -- Vo, el) "'" O 

0 " ( ~ -  Vo, < )  
* .,. * 

in a basis having e2 as its dth element (Vo denotes the appropriate value 
of V0 at t5). 

This matrix has rank d, since the collision was regular, i.e., 
( v l -  V0, e l ) ~  0. Similarly, we get that rank M2 = d. 

From these lemmas the Main Lemma follows. Given two phase points 
Zx, z2 ~ rid, there exist times tl, t2 such that Zl(r) and Zz(Z) contain no atom 
for z ~ I-t, t + 3] with positive probability, where t =  max(t1, t2) (Lemma 2). 
Then by Lemma 3 the measures P'~+ 3, p,z+3 overlap. 

Romarl~. Our proof can be generalized for barriers different from the 
unit ball. The same proof works if the molecule is confined to a convex 
domain whose curvature is uniformly smaller than that of the molecule. 
Otherwise, certain points of the domain cannot be reached by the molecule. 
During the procedure defined in the proof of Lemma 1, we have to avoid 
those phase points where the molecule has more than one point in com- 
mon with the wall, since this collision is not regular and cannot be pertur- 
bed. But the set of these phase points has probability zero, and the proof 
of Theorem 1 works. 
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APPENDIX  

P r o p o s i t i o n .  Given the precollision position (X, V ) of the 
molecule and a velocity V+, then there exist a point x on the surface of the 
molecule ( I x - X ]  = r )  and a velocity v parallel to x - X  such that if an 
atom is situated in x and its precollision velocity is v , then the postcolli- 
sion velocity of the molecule is V+. Furthermore, the following relations 
hold: 

m+M( 
(i) I v _ l )  2m [ V + l - 2 1 V _ l )  

M - m  M + m  
(ii) J v + l i > - - ~ m  [V+I 2~- - [V_I  

m - m  
(iii) if - - [ v _ [  > 2  IV I, then v+ and v are opposite 

M +  m 

M + m  
(iv) if V + = 0 ,  then r v + l -  2 ~ -  iV [ 

Proof. The molecular velocity has two components: one is parallel to 
x - X ,  and the other is orthogonal to it. They are denoted by 11 and A_. 
Thus we have 

V ~- = V~+, v • = v +  = 0  (A1) 

M - m  2m 
VJI+ - - -  V II + v ii (A2) 

M + m - --M-+ m - 

vl~+ m - M  II 2M 
= M + m V - +  M + m  VII (A3) 

Equation (A1) is equivalent to ( X - x ) r l ( v +  - v ); thus, we have two 
possibilities for x. For both choices, vii and V H are the same. Therefore 
Eq. (A2) determines v_. Finally, v and x - X  must point in the same 
direction (to the center of the molecule) and this determines the point x 
uniquely. The relations (i)-(iv) can be obtained easily from (A1)-(A3). 
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